Κάθε μιγαδικός αριθμός μπορεί να γραφτεί με τη μορφή , όπου τα και είναι πραγματικοί αριθμοί και λέγονται πραγματικό μέρος και φανταστικό μέρος του μιγαδικού αριθμού, αντίστοιχα.
Για παράδειγμα, ο είναι ένας μιγαδικός, με πραγματικό μέρος και φανταστικό μέρος .
Για τους μιγαδικούς αριθμούς ορίζονται οι πράξεις της πρόσθεσης,της αφαίρεσης, του πολλαπλασιασμού και της διαίρεσης, όπως και στους πραγματικούς αριθμούς. Στην ορολογία των μαθηματικών, αυτό σημαίνει ότι το σύνολο των μιγαδικών είναι σώμα.
Η βασική διαφορά των μιγαδικών αριθμών με τους πραγματικούς είναι η ύπαρξη του στοιχείου i και των πολλαπλασίων του, που όταν υψωθούν στο τετράγωνο δίνουν αρνητικούς πραγματικούς αριθμούς. Επιπλέον, στους μιγαδικούς δεν ορίζεται η διάταξη, δηλαδή δεν έχει έννοια να συγκρίνουμε δύο μιγαδικούς ώστε να πούμε ότι ένας μιγαδικός αριθμός είναι μεγαλύτερος ή μικρότερος από κάποιον άλλον μιγαδικό αριθμό
Οι μιγαδικοί αριθμοί έχουν, μεταξύ άλλων, σημαντικές εφαρμογές στη λύση διαφορικών εξισώσεων αλλά και στη μελέτη διάφορων φυσικών προβλημάτων οπτικής, κυματικής, κβαντομηχανικής και ηλεκτρονικής.
Οι μιγαδικοί αριθμοί επινοήθηκαν από τον Ιταλό μαθηματικό Τζερόλαμο Καρντάνο, ο οποίος τους χαρακτήριζε ως φανταστικούς, στην προσπάθειά του να βρει αναλυτικές λύσεις σε κυβικές εξισώσεις. Η διαδικασία επίλυσης τέτοιων εξισώσεων απαιτεί ενδιάμεσους υπολογισμούς, οι οποίοι μπορεί να περιλαμβάνουν τετραγωνικές ρίζες αρνητικών αριθμών, ακόμα κι όταν η ρίζα είναι πραγματικός αριθμός. Το γεγονός αυτό οδήγησε τελικά στο Θεμελιώδες Θεώρημα της Άλγεβρας, που δείχνει ότι στο σώμα των μιγαδικών αριθμών κάθε μη μηδενικό πολυώνυμο έχει τουλάχιστον μια ρίζα.
Συμβολισμοί και πράξεις
Το σύνολο όλων των μιγαδικών αριθμών συμβολίζεται συνήθως ως C, ή και ορίζεται ως εξής:Το σύνολο των μιγαδικών περιέχει επιπλέον όλους τους πραγματικούς αριθμούς, καθώς κάθε πραγματικός αριθμός μπορεί να γραφτεί ως ένας μιγαδικός με μηδενικό φανταστικό μέρος.
Αν το φανταστικό μέρος ενός μιγαδικού είναι ίσο με το μηδέν, τότε αυτός ο μιγαδικός ταυτίζεται με τον πραγματικό αριθμό .
Το πραγματικό μέρος ενός μιγαδικού συμβολίζεται με ενώ το φανταστικό μέρος με , δηλαδή ισχύει:
Πράξεις μεταξύ μιγαδικών αριθμών, γίνονται με βάση τους γνωστούς κανόνες αντιμετάθεσης, προσεταιρισμού και επιμερισμού, της Άλγεβρας:
προσθετική πράξη
πολλαπλασιαστική πράξη
όπου + και η κοινή πρόσθεση και ο κοινός πολλαπλασιασμός των πραγματικών.
Αποδεικνύεται εύκολα ότι το υποσύνολο του
είναι υπόσωμα του και είναι ισόμορφο με το . Με βάση αυτό, πολλές φορές συμβολίζουμε το με , έτσι π.χ. συμβολίζουμε το κτλ.
Το στοιχείο το συμβολίζουμε και το ονομάζουμε φανταστική μονάδα.
Το αυστηρά ορισμένο αυτό σώμα έχει όλες τις ιδιότητες που προαναφέρθηκαν για τους μιγαδικούς και αποφεύγει την "αντιδιαισθητική" αναφορά στο . Για το σώμα αυτό ισχύει:
όπου όμως το δεν είναι ο πραγματικός αλλά ο εναλλακτικός συμβολισμός του μιγαδικού , κι έτσι δεν δημιουργείται πρόβλημα. Οι μιγαδικοί δηλαδή δεν είναι μια αυθαίρετη επίκληση στην ύπαρξη ριζών αρνητικών πραγματικών, αλλά ένα εντελώς διαφορετικό σώμα του οποίου τουλάχιστον ένα υπόσωμα είναι ισόμορφο με τους πραγματικούς.
Μιγαδικό επίπεδο
Κάθε μιγαδικός αριθμός μπορεί να αντιστοιχιστεί σε ένα σημείο ενός δισδιάστατου καρτεσιανού συστήματος συντεταγμένων. Κάθε τέτοιο σημείο λέγεται "εικόνα" του αντίστοιχου μιγαδικού αριθμού και συμβολίζεται με ή . Σε αυτή την περίπτωση, το καρτεσιανό σύστημα συντεταγμένων λέγεται "μιγαδικό επίπεδο" (ή "διάγραμμα Argand").Λόγω της παραπάνω αντιστοίχισης μιγαδικού με σημείο, κάθε μιγαδικός αριθμός μπορεί να αναπαρασταθεί στο μιγαδικό επίπεδο με το διάνυσμα , που έχει αρχή το κέντρο των αξόνων και τέλος το σημείο .
Το μέτρο του μιγαδικού αριθμού ορίζεται ως το μέτρο του διανύσματος ή, ισοδύναμα, ως η απόσταση του από το κέντρο του μιγαδικού επιπέδου:
Συζυγής μιγαδικός
Ο συζυγής ενός μιγαδικού αριθμού ορίζεται ως , και συμβολίζεται . Γεωμετρικά, ο αποτελεί τον κατοπτρισμό του ως προς τον άξονα των πραγματικών (βλ. σχήμα). Για ένα μιγαδικό αριθμό , τον συζυγή και το μέτρο του ισχύουν οι ακόλουθες σχέσεις:- αν και μόνο αν
- αν και μόνο αν
Τριγωνομετρική μορφή
Εκτός από τις καρτεσιανές συντεταγμένες του, ένας μιγαδικός μπορεί να γραφεί και με πολική ή τριγωνομετρική μορφή. Οι πολικές συντεταγμένες ενός μιγαδικού είναι το ζευγάρι , όπου , είναι το μέτρο του μιγαδικού και , το πρωτεύον όρισμα του .Όρισμα ενός μιγαδικού είναι κάθε μία από τις γωνίες που σχηματίζει ο θετικός οριζόντιος ημιάξονας με το αντίστοιχο διάνυσμα του . Πρωτεύον όρισμα είναι η γωνία εκείνη που βρίσκεται στο διάστημα , και συμβολίζεται με . Οπότε κάθε άλλο όρισμα του , διαφέρει κατά από το , όπου (ακέραιος).
Ισχύει ότι:
όπου:
και το όρισμα προσδιορίζεται με προσθετέο , δηλαδή ορίσματα που διαφέρουν κατά ένα ακέραιο πολλαπλάσιο του είναι ισοδύναμα.
Εκθετική μορφή
Χρησιμοποιώντας τη ταυτότητα του Όιλερ, η τριγωνομετρική μορφή μετατρέπεται σε:Με βάση την εκθετική μορφή των μιγαδικών αριθμών, μπορούν να οριστούν ο πολλαπλασιασμός ή η διαίρεσή τους ως εξής:
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου