Σάββατο 1 Σεπτεμβρίου 2018

Το τριαντάφυλλο και τα μαθηματικά






Πιάνει στα χέρια του το τριαντάφυλλο και το παρατηρεί προσεκτικά . Διαπιστώνει ότι πάνω στο λουλούδι τα ροδοπέταλα διατάσσονται σε σπειροειδή μορφή. Παίρνει ένα μαχαιράκι και κόβει το λουλούδι. Ξεκινώντας από το κέντρο καταγράφει μια ομάδα με 5 ροδοπέταλα , που ξεφυτρώνουν  από την ίδια περιοχή,  η αμέσως ευρύτερη ομάδα έχει ( συμπεριλαμβανόμενης των πετάλων της προηγούμενης )   8 ροδοπέταλα συνολικά,
η επόμενη μεγαλύτερη ομάδα ( συμπεριλαμβανόμενων και των εσωτερικών) περιλαμβάνει  συνολικά 13,  η επόμενη 21 και το σύνολο είναι 34 ροδοπέταλα.
Οι συγκεκριμένοι αριθμοί του κάνουν εντύπωση . Τα ροδοπέταλα διατάσσονται έτσι ώστε οι αριθμοί που προκύπτουν να είναι όροι της ακολουθίας Fibonacci.   1, 1, 2, 3, 5, 8, 13, 21, 34, 55. . .

 

Καθένας από τους όρους της προκύπτει από το άθροισμα των δύο που προηγούνται.
Σε γλώσσα Άλγεβρας     αν = αν-1 + αν-2
Στο τριαντάφυλλο τα ροδοπέταλα που μέτρησε εκείνος ήταν τριαντατέσσερα.
Σε ρόδο με περισσότερα πέταλα θα είναι πενήντα πέντε.

Αν φτιάξουμε μια νέα ακολουθία με όρους τους λόγους των διαδοχικών όρων της προηγούμενης  θα έχουμε     3/2, 5/3, 8/5, 13/8, 21/13, 34/21. . – με προσέγγιση θα είναι 1,5,   1,667,   1,6,   1,625,   1,615   1,619 . .  –  και θα διαπιστώσουμε ότι συγκλίνει προς έναν αριθμό. Μπορούμε να αποδείξουμε ότι ο αριθμός προς τον οποίο συγκλίνει η ακολουθία θα είναι ο φ,

 

ο  ίσος με 1, 618, ο αριθμός που αντιστοιχεί στη ΧΡΥΣΗ ΤΟΜΗ.
Χωρίζουμε ένα ευθύγραμμο τμήμα σε δύο κομμάτια. Στη γλώσσα της ελληνικής Γεωμετρίας λέμε ότι κάνουμε μια ΤΟΜΗ η οποία είναι ΧΡΥΣΗ εφόσον ο λόγος του μεγάλου προς το μικρό είναι ίσος με το λόγο ολόκληρου προς το μεγάλο.

ΠΗΓΗ 



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου