Στη συνέχεια αν ο αριθμός που προκύπτει είναι άρτιος τον διαιρούμε με το 2, αν είναι περιττός τον πολλαπλασιάζουμε πάλι επί 3 και προσθέτουμε την μονάδα κ.ο.κ.
Για παράδειγμα: έστω n=3. Επειδή είναι περιττός τον πολλαπλασιάζουμε επί 3 και προσθέτουμε τη μονάδα, οπότε προκύπτει ο αριθμός 10.
Ο 10 είναι άρτιος συνεπώς τον διαιρούμε δια 2 και προκύπτει ο περιττός 5. Συνεχίζοντας, (3 ˙ 5 +1) = 16 και 16:2=8, 8:2=4, 4:2=2, 2:2=1.
Σύμφωνα με την εικασία του Collatz ανεξάρτητα από τον αριθμό που θα ξεκινήσουμε στο τέλος καταλήγουμε πάντα στον αριθμό 1.
Αυτό έχει επαληθευτεί αριθμητικά για τους αριθμούς μέχρι και τον 5,76 x 1018 (περίπου 6 δισεκατομμύρια δισεκατομμύρια), αλλά χωρίς αναλυτική μαθηματική απόδειξη. Και υπάρχει πάντα η πιθανότητα ένας απίστευτα μεγάλος αριθμός να παραβιάσει την εικασία Collatz.
Ο Πωλ Έρντος δήλωσε σχετικά με την εικασία του Κόλατζ: "Τα μαθηματικά μπορεί να μην είναι έτοιμα για τέτοια προβλήματα." και πρόσφερε $500 για την λύση του.
newscientist.com
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου